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Preface

This book is written especially for the students of MATH 3120 and 3130 at
Austin Peay State University in Clarksville, TN. It is intended to introduce the
reader, whether versed in programming or not, to the basic elements of Mathemat-
ica.

Computer algebra systems and symbolic programming provide a valuable means
of exploring research topics at the undergraduate level. In addition, Mathematica’s
facilities for functional programming provide a means for students to learn solid
programming habits.

This book features an introduction to basic usage of Mathematica for those who
have never used it before, and for those who have never done any programming be-
fore. It is our aim that this preliminary section “If you have never usedMathematica
. . . ” will provide enough background to get started with the remainder of the book.

We hope that this book will serve to clarify and make Mathematica a more
accessible programming language. We hope this book illuminates the joy of pro-
gramming, and that those who read this book will make exciting discoveries because
of it.

Happy Programming, and Best Wishes!

Samuel N. Jator & Robert D. French
Austin Peay State University
August 2, 2024
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If you have never used Mathematica . . .

This pamphlet assumes you have done at least a little programming before,
possibly in C, C++, FORTRAN, Visual Basic, or some other language. If not, that
is completely fine. We will walk you through some simple programming concepts
here so that you can get your feet wet, and then you will be ready to take on chapter
1.

If you have done some programming before, but have never used Mathematica,
it will still benefit you to spend some time with this section, because it will walk
you through some tricks to make using Mathematica more pleasant.

1. Notebooks and Cells

When you start Mathematica for the first time, it will create a new notebook
for you. A notebook is just a type of document, like a Microsoft Word document,
but it is specially designed to make Mathematica programming easier.1 Notebooks
are broken into cells, which you can think of like paragraphs. Each cell can have
code in it, and they can be evaluated2 independently.

You can create new cells by clicking in a blank region of the docoument. You
will see the cursor displayed sideways, and that is Mathematica’s way of telling you
that the cursor is in between cells or that it is not inside a cell. As soon as you
start typing anything, a new cell will be created, your cursor will hop inside, and
anything you type will be displayed there.

Cells can have different “Styles” depending on what you want to use them for.
By default, when a new cell is created it will be an “Input” cell, which means you
can type code in it and evaluate it. By right-clicking on the vertical bar on the
right side of a cell, you can bring up a menu that will allow you to change the style
of the cell. Changing your cell style to “Title”, “Section”, “Subsection”, etc. as
appropriate can help you organize your work and will make your presentations look
more professional.

When you type some code in a cell, you can evaluate it by pressing “Shift+Enter”3.
In this book, the result of evaluations will be displayed next to a ↪→ symbol. For
example:

1Note that for most programming languages, you type your code in a plain text document,
or one that has no special formatting in it. This is not the case in Mathematica; if you open

a notebook in Vim or Notepad, you will see that your code is surrounded by lots of formatting
directives that you probably don’t want to type by hand!

2To “evaluate” some code simply means to run it.
3In case you are not familiar with this convention, it means to hold the “Shift” key and then

press the “Enter” button
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2. FANCY TYPING AND THE PALETTE iv

(* Cell 1.1 *)

5 + 7

↪→ 12

In Mathematica, the results of your computation will be displayed in an output
cell that is attached to the input cell you just evaluated, so it is important to note
that we present things in a slightly more compact fashion. Also, you will notice that
the above cell is labelled Cell 1.1 because it is the first cell in Section 1. Likewise,
the next cell will be labelled Cell 1.2:

(* Cell 1.2 *)

cellnumber = 2;

‘‘This is the ’’ <> ToString[cellnumber] <> ‘‘nd cell!’’

↪→ ‘‘This is the 2nd cell!’’

Please feel encouraged to follow along by typing the code you see here into a
Mathematica notebook and evaluating them. Much like mathematics, you cannot
learn any programming language simply by reading a book – you must also solve
problems and tinker with examples.

2. Fancy Typing and the Palette

When you start Mathematica, it should load a set of buttons in a thin vertical
window to the right of your notebook. If it does not, you can access this palette
by going to “Window” → “Palettes” → “Basic Math Input” in the menu bar. The
palette gives you ways to make your code look more mathematical. For example,
there are buttons for writing integrals, summations, exponents, matrices, greek
letters, etc4. If you press any of these buttons, it will insert the necessary symbols
into the current cell and you will see several small boxes in the positions where one
would expect symbols. Pressing “Tab” will allow you to move between these boxes,
and type any valid Mathematica expression in them.

2.1. Subscripts, Exponents, and Fractions. There are also keyboard short-
cuts for many of the symbols in the palette. For example, to type a fraction, you
can press “Ctrl+/” and your cursor will automatically be placed in the numerator.
To type the fraction 2

3 in Mathematica, you simply need to press “Ctrl+/” and then
“2”, “Tab” (which moves you to the denominator), and then “3”.

Likewise, to type x3, you simply type “x” and then “Ctrl+6” and then Math-
ematica will give you a black box above and to the right of the “x” character and
move your cursor there. Then type “3”, and you will have x3.

You can of course combine elements in expression boxes. For example, to write
x

2
3 , you can type “x” and then “Ctrl+6” to get an expression box in the exponent

position, then type “Ctrl+/” to turn that box into a fraction, then hit “2”, “Tab”,
and then “3”.

2.2. Greek Symbols (Things like π, θ, and α). Using the “Esc” button,
you can generate these symbols. “Esc+pi+Esc” will get you the π symbol. You
can look at Table 1 to see a longer list of symbols. These symbols are also available
in the “Basic Math Input” palette.

4Indeed, many of the basic features of LATEXare available in Mathematica to help you typeset
mathematical expressions, but you will still need the full power of LATEXin order to prepare your

research for publication.



3. FUNCTIONS v

Symbol Mathematica code
π “Esc” pi “Esc”
α “Esc” alpha “Esc”
β “Esc” beta “Esc”
θ “Esc” theta “Esc”
ϕ “Esc” phi “Esc”
η “Esc” eta “Esc”
χ “Esc” chi “Esc”

Table 1. A table of greek letters

2.3. Sums, Integrals, and Derivatives. These are best accessed by using
the corresponding buttons in the “Basic Math Input” palette. For example, clicking
on the large capital Sigma will give you a summation sign with two input boxes
below it and one above. You can type expressions in these boxes and press “Tab”
to go to the next. You can also construct integrals and derivatives in this fashion.
Here are some things to try:

(1) Find the sum
∑10

n=1 2
n

(2) Make Mathematica show you that
∫ π

0
sin(x)dx = 1

(3) Find the derivative of sin(x)

3. Functions

Mathematica has tons of built-in functions. It has trig functions like Sin and
Cos. It also has functions for plotting graphs and generating lists or tables of
data (see “??” and “Lists, Map, and Table”). In addition, you can create your own
functions, but that will be discussed in Chapter 3, “Defining Your Own Functions”.
For now, it is important to go over a few basics about how functions work in
Mathematica.

For example, we know from trig that sin(π2 ) = 1. To see this for yourself in
Mathematica, type the following into a cell:

(* Cell 3.1 *)

Sin[π
2 ]

and press “Shift+Enter” to evaluate the cell. Below, you will see an output cell gen-
erated containing the number 1. However, there are other functions in Mathematica
aside from normal math functions. For example, you can use the Map function to
produce a list of sine values for a given set of domain points.

To see what we are talking about more clearly, let’s consider the set {0, π
2 , π,

3π
2 , 2π}.

We can calculate the corresponding range values very simply by applying Sin to
these values via Map.

(* Cell 3.2 *)

Map[Sin, {0, π
2 , π, 3π

2 , 2π}]
↪→ {0, 1, 0,−1, 0}

where the ↪→ on the last line indicates the return value from Cell 3.2.



4. VARIABLES vi

Figure 1. Sin[x] on [0, 10]

4. Variables

Mathematica’s variables are very simple. Variables can hold numbers, lists,
matrices, functions, symbols, or graphs. For now, we will just look at how to store
some numbers as variables and see how it affects a plot.

(* Cell 4.1 *)

Amplitude = 1;

UpperBound = 10;

Plot[Amplitude * Sin[x], {x, 0, UpperBound}]
When you execute this, you will see that sin(x) will be drawn on the interval

[0, 10], as depicted in Figure 1. Try doing the following by changing the values for
Amplitude and UpperBound in Cell 4.1:

(1) Plot 2 sin(x) on (0, 10)
(2) Plot − sin(x) on (0, 10)
(3) Plot π sin(x) on (0, 2π)



CHAPTER 1

A Review of Some Stuff You’ve Probably Seen
Before

Before beginning this chapter, it is assumed that you know a few things about
programming already. Specifically, you will need to know how to

(1) assign values to variables
(2) evaluate Mathematica cells

and if you don’t, that’s quite alright. Just see the section “If you have never used
Mathematica . . . ” on page iii, and even if you have done a bit of programming
before, we will walk you through some basic Mathematica.

1. Variable Assignment

The first thing we need to know in any language is how to assign variables.
Probably you are thinking “I learned this in CSCI 1010!”, but Mathematica is a
subtle language, and does not always work as you might expect if you are coming
from C++ or FORTRAN.

(* Cell 1.1 *)

i = 1;

j = 2

k := 3;

l := 4

Looking at this example, we can see that there are four slightly different ways
to “assign” values to a variable, so let’s discuss this a bit. If you put this code into
a Mathematica cell, you will see that, upon evaluating the cell, it will output 2.

So, if we assigned four numbers to four variables, why do we only see one
output? The are two key items here. One is the semicolon (;) at the end of the first
and third lines. This tells Mathematica to suppress the output of that calculation.
Generally, it is appropriate to put a semicolon at the end of every line of code in a
cell except for the last one. This is because you usually want to group your code into
cells in such a way that each cell achieves one result, computes one item (or related
set of items), or builds one data structure. When debugging, it can sometimes be
handy to remove individual semicolons in order to investigate whether each line
behaves as you expect.

The second key item is the := operator. This is called the Set Delayed operator.
This is different from the = operator1 in one important way: it does not assign the
value to that variable immediately. Rather, it tells Mathematica to wait until k or
j is used and then evaluate the right hand side of that expression.

1also called the Set operator

1



1. VARIABLE ASSIGNMENT 2

What that means, in terms of the above example, is that, at the moment of
evaluation, i and j are numeric variables that contain the values 1 and 2, but k

and l are just symbols that do not yet contain any value. This might be hard to
see with the previous example, so let’s look at one that’s slightly more involved:

(* Cell 1.2 *)

i = 1;

j = i + 10

k := i + 10

When we evaluate this code, we see that the output is simply 112. Now we set
up a short experiment: We create a few separate cells, and examine what happens
to j and k when we change the value of i.

(* Cell 1.3 *)

{j,k}

(* Cell 1.4 *)

i = 2;

{j,k}

(* Cell 1.5 *)

i = 20;

{j,k}

(* Cell 1.6 *)

i = x;

{j,k}

When we evaluate these cells, we note that they each produce an ordered pair
(also called a list) as output. This is just to help us see what happens to i and j

when we change the value of i.
In Cell 1.3, nothing interesting happens. We note that i and j are both 11 like

we expected them to be. But now let’s evaluate Cell 1.4 and see what happens.
The output from Cell 1.4 tells us that j is still 11, but that k has been updated to
reflect the new value of i. This is because the definition we gave for k in Cell 1.2
is re-evaluated every time we use k in an expression.

If we evaluate Cell 1.5, we see the same thing has happened: j is still 11, but
k is now 30, reflecting the fact that we changed the value of i again.

When you evaluate Cell 1.6, you will see that is does something slightly dif-
ferent. The explaination is simple, but we leave it as an exercise so that you are
forced to think about it!

Delayed Evaluation is most frequently used when defining functions (See Defin-
ing Your Own Functions). For now, this is as far as we need to go with this topic.
You might be thinking: “Then why did we even bother?!” but, the misuse of this
operator is the cause of many bugs, and much of the Mathematica code you are
likely to find on the internet contains a wild := when it shouldn’t. Straightening
this out now will spare you headaches, and will promote friendship between you
and your code.

2Using what we discussed earlier, can you figure out why this is? See problem 1



2. INVOKING FUNCTIONS 3

2. Invoking Functions

In Mathematica, the invocation operator is []. This means that, given a func-
tion F, you can invoke it on an argument x by writing F[x]. If you do not use the
invocation operator, your function will be treated like a variable. Let us look at
how this works in a few different scenarios:

(* Cell 2.1 *)

Cos[0]

↪→ 1

This is an example of invoking the Cos function directly for a single argument.
If we want to evaluate Cos for a list of arguments, we can instead treat it as a
variable and pass it as an argument to the function Map:

(* Cell 2.2 *)

Map[Cos, {0, 0.1, 0.2, 0.3, 0.4, 0.5}]

Evaluating this cell will give you all of the values for Cos for the domain points
{0, 0.1, . . . , 0.5}. The difference here is that we did not invoke the Cos function
directly, but rather we passed it as a variable to the Map function, which applied
Cos in turn to each of the data points in our list. Some functions are listable, which
means that when passed a list, they automatically act on each element of the list
separately. For example, all of the built-in trig functions are listable, so instead of
using Map as we have above, we could instead write:

(* Cell 2.3 *)

Cos[{0, 0.1, 0.2, 0.3, 0.4, 0.5}]
Taking advantage of listable functions allows you to write code that is more

elegant and compact3. Many other arithmetic operations are also listable, like
addition, multiplication, and exponents.

We can put the famous trig identity sin2(θ) + cos2(θ) = 1 to the test with the
following code4:

(* Cell 2.4 *)

thetaValues = {0, π
4 ,

π
2 };

Sin[thetaValues]2 + Cos[thetaValues]2

↪→ {1, 1, 1}
Of course, not all functions are listable, and sometimes using this feature can

make your code harder to read and thus debug. That is why Map is a trustworthy
alternative.

Exercises.

(1) Explain why the code in Cell 1.2 produces only the single output of 11
(2) Explain why Cell 1.6 produces {11,x + 10} as an output.
(3) Explain, using as much detail as you can, what is happening in Cell 2.4.
(4) Think about scalar multiplication and vector addition from Linear Alge-

bra. Do you think these operations could be expressed as listable functions
in Mathematica? Why or why not?

3As with anything, it is possible to go overboard with this technique and write code that is

utterly incomprehensible. Use it when it makes sense, and avoid it when you think it might be

confusing. Code that is easy to read will win you the respect of peers and professors alike.
4It is worth your while to play around with this code until it “clicks” for you.



CHAPTER 2

The Kernel, Variable State, and Scope

1. What is the Kernel?

In Mathematica, all of your coding is done in a notebook, and all of the output
of your code is displayed there as well. However, the calculations themselves are
done in an entirely separate program1, and this program is called a kernel. There
are many reasons for doing these calculations in a separate program from your
notebooks:

(1) You can still edit your notebooks while long computations are running
(2) You can share variables and data between notebooks
(3) You can manage multiple kernels, (and thus multiple long-running com-

putations) from a single notebook
(4) You can run computations on multiple kernels on other computers

So we see that this separation of kernel and notebook is very powerful. But
what does it mean in terms of your research? Specifically, while you are working
on your code, the values you calculate and the variables you assign them to will
be stored in your “Local Kernel”. This assignment of values to variables is called
“State”, and it’s just a fancy computer science term for “The values of your variables
at a given time”.

Most of the time, these are just technical points that can be ignored, but
understanding how the kernel works will make all the difference in the world when
you begin to debug your research program.

1.1. Quitting the Kernel. This is kindof like an emergency reset for your
program. Quitting the Kernel will basically erase the values for all the variables
in your notebook (because they are stored in this separate program which you are
about to quit). For example, open a new notebook and evaluate the following code:

(* Cell 1.1 *)

NumEggs = 5

Now, in a new cell, evaluate this code:

(* Cell 1.2 *)

Print[‘‘There Are ’’ <> ToString[NumEggs] <> ‘‘ eggs in

a Programmer’s Dozen’’];

And Mathematica will display the text “There are 5 eggs in a Programmer’s
Dozen”2. Now go up to the menu and select “Kernel” → “Quit Kernel” → “Local”.
This will cause the kernel you are using to go away, and your variable state will go

1This is an example of a Service in a Service Oriented Architecture, and if you are interested

in software engineering, you should check this out.
2As opposed to 13 in a “Baker’s Dozen”.

4



1. WHAT IS THE KERNEL? 5

away with it. Now re-evaluate Cell 1.2 and see what you get. It will tell you that
there are “NumEggs” in a Programmer’s Dozen. Wait. . .What?

What’s happening here is that when Mathematica tries to find a value for the
variable NumEggs, it notices that one does not exist, so in order to keep your code
from exploding3 a value is fabricated for you. The value given is a symbol object,
which is just a placeholder, kinda like a string, which corresponds to the name
“NumEggs”.

Symbols will be discussed in more detail in Chapter ??, but for now they
aren’t important. The thing to focus on here is that the variable NumEggs no longer
contains the value 5 because you quit the kernel in which it was stored.

1.2. Debugging with a Secondary Notebook. When dealing with large
Mathematica projects, it can sometimes be handy to play around with a particular
line of code, or analyze the output from one section before going on to the next
cell. You could do this all in one notebook, but that could get sloppy, and you run
the risk of messing up some code that is already working4.

For example, let’s suppose you have the following block of code that does not
appear to be working correctly:

(* Cell 1.3 *)

EvaluateDerivativeAtAPoint[f ,x ] := Block[{fPrime}5,
fPrime = f’;

fPrime[x]

];

(* Cell 1.4 *)

EvaluateDerivativeAtAPoint[Sin, π]
↪→ -1

(* Cell 1.5 *)

EvaluateDerivativeAtAPoint[x2 + x, π]
↪→ (x+ x2)’[π]

Why does it give the right answer for sin but some weird expression for x2+x?
Well, let’s open a new notebook and play around with a couple of things. You can
open a new notebook by going to “File”→“New” or pressing “Ctrl+N”. In the new
notebook, type the following code:

(* Cell 1.6 *)

(* Second Notebook *)

f = x2 + x;
fPrime = f’;

fPrime[π]
↪→ (x+ x2)’[π]

The idea here was to repeat the basic logic of our EvaluateDerivativeAtAPoint
function to see if we could reproduce the problem, and indeed we have. It looks
like maybe the third line is not invoking the function? Or maybe the second line is

3Which is what would happen in other dynamic languages like Ruby or PHP.
4Although, you are protecting yourself from code loss by using version control, right? If not,

check out Appendix ??, “??”.
5Using Block is just a way to tell Mathematica that fPrime should be treated as a local

variable, which means its value will not be seen outside of the Block statement. More on this in

Section 2, “Scoping Variables with Block”



1. WHAT IS THE KERNEL? 6

not taking the derivative for some reason? One way to settle that is to remove the
third line and then see what happens:

(* Cell 1.7 *)

(* Second Notebook *)

f = x2 + x;
fPrime = f’

↪→ (x+ x2)’

Okay, so that looks a little funny, but we remember that it gave the right answer
for sin, right? So let’s duplicate this cell6 and try again with Sin just to make sure:

(* Cell 1.8 *)

(* Second Notebook *)

f = Sin;

fPrime = f’

↪→ Cos[#1] &

My goodness, what is happening here? It is not obvious from looking at it,
but that is shorthand Mathematica syntax for a new function. It is equivalent to
writing Function[x,Cos[x]], which simply means “Here is a new function that
takes x as an argument and gives Cos[x] as its value”. This will be covered in more
detail in Chapter 3, “Defining Your Own Functions”, but for now we don’t have to
worry about the specifics.

We can make a guess that maybe, for some reason, the ’ operator won’t work
on plain expressions like x2+x, but it will work on things that Mathematica recog-
nizes as full-fledged functions like Sin and Cos. So, how do we make Mathematica
recognize x2 + x as a function? Let’s try using Function to define our expression
as a proper function of the variable x:

(* Cell 1.9 *)

(* Second Notebook *)

f = Function[x, x2 + x];
fPrime = f’

↪→ Function[x, 1 + 2x]

And we can see now that we have Function[x, 1 + 2x] as our result, which
means “Here is a new function that takes x as an argument and gives 1 + 2x as its
value”, and indeed this is what we want for the derivative of x2 + x. Now let us
re-introduce the line of code we removed earlier:

(* Cell 1.10 *)

(* Second Notebook *)

f = Function[x, x2 + x];
fPrime = f’;

f’[π]
↪→ 1 + 2π

So now we understand the nature of the bug: it wasn’t that our EvaluateDerivativeAtAPoint
function was wrong, rather it was that we were invoking it with the wrong type of
argument. We gave it the expression x2 + x when in fact we should have given it
the function Function[x, x2 + x]. Now we can go back to our first notebook and
correct the code in Cell 1.5:

6you can click on the bar on the right side of the cell to select it, hit “Ctrl-C” to copy, and
then “Ctrl-V” to duplicate the contents into a new cell.



2. SCOPING VARIABLES WITH BLOCK 7

(* Cell 1.11 *)

EvaluateDerivativeAtAPoint[Function[x, x2 + x], π]
↪→ 1 + 2π

and now we are in good shape. Using this debugging strategy, we were able to
fool around with fixing the bug in one notebook without messing up the code in
our main notebook. This is an excellent habit, and it will save you mountains of
trouble.

2. Scoping Variables with Block

Whenever you use a new variable in Mathematica, the kernel makes a new entry
for that variable in the global symbol table. This can be a hassle when debugging,
because you may want to re-evaluate a cell over and over while you change it, and
sometimes values from previous calculations can sneak in and mess up your code.
For example, let’s say that you are building a list of intermediate expressions for
some larger calculation. Maybe you have to calculate the value of a function and
its derivative at certain points and store them in a list7:

(* Cell 2.1 *)

PointsForFunction = {0, 1, 2};
PointsForDerivative = {3, 4};
ListOfValues = {};

(* Cell 2.2 *)

f = Function[x, x2 + x];
AppendTo[ListOfValues, Map[f, PointsForFunction]]

↪→ {0, 2, 6}

(* Cell 2.3 *)

fPrime = Function[x, 2x];
AppendTo[ListOfValues, Map[fPrime, PointsForDerivative]]

↪→ {0, 2, 6, 6, 8}

Which looks all well and good, except we put the wrong derivative for fPrime!
Let’s fix that and re-evaluate Cell 3:

(* Cell 2.4 *)

fPrime = Function[x, 2x+ 1];
AppendTo[ListOfValues, Map[fPrime, PointsForDerivative]]

↪→ {0, 2, 6, 6, 8, 7, 9}

Hmmm. . . that can’t possibly be right. It seems like we have too many values
here, don’t you think? Let’s re-evaluate Cell 3 again and see if it does the same
thing:

(* Cell 2.5 *)

fPrime = Function[x, 2x+ 1];
AppendTo[ListOfValues, Map[fPrime, PointsForDerivative]]

7This may seem like a silly example, but it is one of the first steps in deriving BDF, Numerov,
or Adams-style ODE solvers



2. SCOPING VARIABLES WITH BLOCK 8

↪→ {0, 2, 6, 6, 8, 7, 9, 7, 9}

Okay, it looks like our list is growing by 2 units every time we run this cell.
What could possibly be going on? Let’s re-evaluate Cell 2 and see what we get:

(* Cell 2.6 *)

f = Function[x, x2 + x];
AppendTo[ListOfValues, Map[f, PointsForFunction]]

↪→ {0, 2, 6, 6, 8, 7, 9, 7, 9, 0, 2, 6}

Probably, clever reader, you have figured out the bug by now – Every time we
re-evaluate Cells 2 and 3, new values are added to our ListOfValues, but we never
bothered to reset it, so it just kept growing!

Now, how do we resolve such a puzzle? The answer is that we can use the Block
function to keep our variables contained to just one region of the code. That will
allow us to re-run cells over and over while we make adjustments, and Mathematica
will automatically reset the variables for us each time. Check this out:

(* Cell 2.7 *)

PointsForFunction = {0, 1, 2};
PointsForDerivative = {3, 4};
ListOfValues = Block[{temporaryList},
temporaryList = {};
f = Function[x, x2 + x];
AppendTo[temporaryList, Map[f, PointsForFunction]];

fPrime = Function[x, 2x+ 1];
AppendTo[temporaryList, Map[fPrime, PointsForDerivative]];

temporaryList

]

↪→ {0, 2, 4, 7, 9}
You can re-run that as many times as you like, and you’ll never have to worry

about values from old calculations sneaking into your list.



CHAPTER 3

Defining Your Own Functions

Defining one’s own functions is very easy inMathematica. For example, suppose
you want a function that converts from Cartesian coordinates to polar coordinates.
This is a map of the form (x, y) 7→ (r, θ) using the relationships x = r cos(θ) and
y = r sin(θ). We also want an inverse function of the form (r, θ) 7→ (x, y) that will
convert Polar coordinates to Cartesian. Let’s see how this would look in code:

(* Cell 0.1 *)

CartesianToPolar[{x ,y }]:= {
√
x2 + y2, ArcSin

[
y√

x2+y2

]
};

PolarToCartestian[{r ,θ }]:= {r Cos[θ], r Sin[θ]};

We can invoke these functions by using the [] operator, as discussed in the
section “Invoking Functions”. Let’s see what happens when we do.

(* Cell 0.2 *)

CartesianToPolar[{1,1}]
↪→ {

√
2, π

4 }

Since these two functions are one another’s inverse, we can compose them and
recover our original input:

(* Cell 0.3 *)

point = {1,1};
PolarToCartesian[CartesianToPolar[point]];

↪→ {1, 1}

1. Using Block for Scope

Notice how, in the above definition of CartesianToPolar, we calculate x2+ y2

in two different places. This isn’t the end of the world, but it’s a little inelegant,
so let’s clean it up by calculating it first and using it later as a variable:

(* Cell 1.1 *)

CartesianToPolar[{x ,y }]:= (

r =
√

x2 + y2;
{r, ArcSin

[
y
r

]
}

);

That looks much nicer. Cleaning up the code in this way will make your
code more readable, and that will make it easier to debug and share with others.

9
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However, there is a small side effect: the value stored in r will “leak” out of your
function. To see what this means, let’s do an example:

(* Cell 1.2 *)

CartesianToPolar[1,1];

r

↪→
√
2

Now, why should r even exist outside of where it is defined in the CartesianToPolar
function? That’s because Mathematica makes all new variables global by default.
This means that unless you indicate otherwise, variables created anywhere in your
program will be accessible from anywhere else. Global variables are not necessarily
bad, but if you don’t keep an eye on them they can be a total nightmare.

Fortunately, Mathematica provides a construct known as a block which allows
you to set up some local variables and automatically erase them when you’re done.
You can make a block by calling the Block function like this:

(* Cell 1.3 *)

CartesianToPolar[{x ,y }]:= Block[z,

z =
√

x2 + y2;
{z, ArcSin

[
y
z

]
}

];

Now if you repeat the experiment from Cell 5, you will see that no new value is
stored in the variable z. That is because the block automatically set z up as a local
variable and erased it when the block ended. Keeping variables like this contained
in a block will help keep your code clean, because it will keep cells from adversely
interacting with one another.

2. Accepting Functions as Arguments

Frequently it is useful to take a second function as an argument for a function
you have defined. There are no specific use cases for this, but if you are familiar
with the technique, you will be able to recognize when it will be helpful.

As an example, let’s say that you are preparing a report and you would like
all of your graphs to be displayed uniformly. You could manually go throuhg your
code and set all of your Plot settings to be the same, or you could define a single
abstract function to take certain arguments and plot all of your graphs in the same
style.

Let’s assume that in this report, we will be plotting a comparions of Exact
Solutions versus Approximate Solutions for a set of differential equations. That
means we want our custom plot function to take two arguments

(1) The Exact Solution as a Mathematica function
(2) The Approximate Solution as a list of points to plot

so we know that the signature of our function will look like the following:

(* Cell 2.1 *)

AwesomePlot[ExactSoln , ApproxSoln , LowerBound , UpperBound ]:=

This is because we will need to accept not only the Exact Solution and the
Approximate Solution, but also the interval on which those solutions should be
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Figure 1. AwesomePlot[Sin,{0,1,0,-1,0},0,2π]

plotted. This is part of the normal information we would pass to Plot1. Now we
want to display both of these functions on the same graph, preferebly in different
colors, so that we may compare them. Thus the body of our function may look
like:

(* Cell 2.2 *)

ExactGraph = Plot[ExactSoln[x], {x, LowerBound, UpperBound},
PlotStyle -> Blue];

n = Length[ApproxSoln];

StepSize = (UpperBound - LowerBound)/(n - 1);

ApproxPoints = Table[{ApproxSoln[[i]],(i - 1) * StepSize

+ LowerBound},{i,1,n}];
ApproxGraph = ListPlot[ApproxPoints, PlotStyle -> Red];

Show[ExactGraph, ApproxGraph]

And we can see that this will form a very handy tool that will make sure all
of the plots in your report are very consistent, and it will make your code much,
much cleaner.

3. Recursive Functions

It is sometimes handy to define a function that turns around and calls itself.
This can come up in Math when building recurrence relations, but it can also be
a stylistic technique to help keep your code clean and readable. Clever use of
recursive functions can make code more concise, and thus more transparent and
demonstrable. As stated many other times in this book, code clarity is vital to
collaboration.

3.1. Calculating the Fibonacci Sequence. The Fibonacci Sequence is a
famous integer sequence that appears unexpectedly in nature and aesthetics. For
many, it is the first clue that the world we live in is inherently mathematical. The
nth term in this sequence, labelled Fn, can be calculated as follows:

1You may recall that normally Plot is invoked by using an expression, not a function vari-
able, as the first argument (i.e. Plot[Sin[2 x], {x,0,1}]). This is because Plot evaluates its

arguments in a non-standard way.
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F0 = 0(1)

F1 = 1(2)

Fn = Fn−1 + Fn−2(3)

Now, how do we build this in Mathematica? Notice that in Equation 3, Fn

is defined in terms of previous members of the sequence. Let’s rephrase these
equations in function notation and see if it becomes a little clearer:

F (0) = 0(4)

F (1) = 1(5)

F (n) = F (n− 1) + F (n− 2)(6)

So now we can see that the function F (n) depends on itself. That is what the
notion of a recursive function is all about! So, let’s try to build this in Mathematica:

(* Cell 3.1 *)

F[n ] := F[n - 1] + F[n - 2];

We can hit “Shift+Enter” to evaluate this cell, and we get no complaints from
Mathematica, so everything must be fine, right? Let’s try to calculate F[2] and see
if we get 1:

(* Cell 3.2 *)

F[2]

↪→ Recursion depth exceeded

So. . . that’s not cool. . . But what does that error even mean? It means that
our function F called itself over and over and over again until Mathematica said
“Enough! This thing looks as though it will never stop, so I’m going to stop it for
you!”. But why did it not stop at F[0] = 0 like Equation 4? Well, we didn’t tell
it when to stop, so when it got to n = 0, it called F[0] which called F[-1] and
F[-2] and kept right on rolling down into the negative numbers.

That being said, how do we make a recursive function stop at a certain point?
As with most things in Mathematica, it’s pretty easy – we just tell it when, like
this:

(* Cell 3.3 *)

F[0] = 0;

F[1] = 1;

F[n ] := F[n - 1] + F[n - 2];

What happens here is that the function F actually has different rules that it
can execute depending on what the input is. This is the Mathematica equivalent
of a piecewise-defined function. It is as though we had written:

F (n) =

 0 for n = 0
1 for n = 1

F (n− 1) + F (n− 2) for n ≥ 2
(7)
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When a function has many different rules with different patterns, Mathematica
will try to match them in the order they are given2. The first two rules are expressed
without signs in the arguments. This indicates that they should match exactly
the value given. This means the first rule is matched only when n = 0 and it is
skipped otherwise.

There are many other types of wilcards, and we will explore these in the next
section. It is recommended that you do exercises 5 and 6 before proceeding.

3.2. Building your own Derivative operator. Exercises.

(1) In Cell 1, why were the functions defined with their variables inside a list
({})? What would be different if the curly braces were le ft off? How
would this affect composition in Cell 3?

(2) Consider the code given for AwesomePlot and explain why n - 1 yields a
more accurate StepSize than n would.

(3) Expand the code for AwesomePlot so that it takes a string to use as the
title for the plot

(4) Expand the code for AwesomePlot so that it automatically labels plots
as “Figure 1”, “Figure 2”, etc without explicitly takin g an argument.
Hint: It should contain a variable that gets incremented every time you
call AwesomePlot.

(5) Build a recursive function that can generate the Fibonacci Word of length
n.

(6) Build a recursive function that can test the Collatz Conjecture for a given
Natural number n.

2Try quitting the kernel and moving line 3 to the top in Cell 1. Re-evaluate the cell and see
if you can make a conjecture about why the sequence does not finish in this case.

http://en.wikipedia.org/wiki/Fibonacci_word
http://en.wikipedia.org/wiki/Collatz_conjecture


CHAPTER 4

Lists, Map, and Table

This chapter introduces what computer scientists refer to as functional pro-
gramming. To understand some of the impact of this, we begin by discussing the
fundamental data structure of functional programming, the List.

A List is similar to an array that you might have encountered in other pro-
gramming languages. One of the main differences is that Lists are designed to grow,
whereas arrays are designed to take up a fixed amount of memory.

Lists in Mathematica can be constructed very simply by the following state-
ment:

(* Cell 0.1 *)

A = List[];

or equivalently

(* Cell 0.2 *)

A = {};
however, the former style should be preferred as it is more explicit1. Lists can be
grown by appending elements to them. For example, in order to create the list
1, 2, 3, 4, we could do the following:

(* Cell 0.3 *)

AppendTo[A, 1];

AppendTo[A, 2];

AppendTo[A, 3];

AppendTo[A, 4];

Of course, we could also define this list explicitly as follows:

(* Cell 0.4 *)

A = {1,2,3,4};
and this is of course much more concise. Generally, if a list can be defined without
doing any calculations, i.e. if it is a constant, you will define it all at once as we have
done here. However, if the list must be built up programmatically, it is necessary
to use the AppendTo function as described above.

We can also access list elements directly by using the [[]] operator. For
example, to get the first element of A, we do as follows:

(* Cell 0.5 *)

A[[1]]

Note that unlike most programming languages, Mathematica begins indexing lists
with 1 rather than 0. This is good, because it is in keeping with most mathematical

1Good programmers always aim for their code to be clear and explicit. This makes it easier
for others to read their code and understand its meaning, and that is good for friendship.

14
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notation for dealing with vectors and matrices. We can also assign values explicitly
to a list by using the [[]]= operator like so:

(* Cell 0.6 *)

A[[2]] = 5;

You cannot grow a list in this fashion. That is, for a list like A that has 4
elements, you cannot add a fifth element by

(* Cell 0.7 *)

A[[5]] = 5.0;

This is because, like arrays in C or Java, lists have a fixed width, and Mathematica
will not allocate more memory for them unless you explicitly tell it to (using the
AppendTo function).2

1. The Map Function

You may have seen the Map function mentioned previously in this book. Now
we will discuss it in detail. Map takes two arguments: a Mathematica function F,
and a List of domain elements for F. Recall the following example from Chapter 1,
“Stuff You’ve Seen Before”:

(* Cell 1.1 *)

Map[Cos, {0, 0.1, 0.2, 0.3, 0.4, 0.5}]
This coode generates a list of range values for the Cos function that correspond

to the domain points {0, 0.1, 0.2, 0.3, 0.4, 0.5}. In languages like C, FORTRAN, or
Python, you may have used a “for-loop” to do a task like this. You would have
to declare an empty array, then declare an index, and then apply the function to
each element of the domain array. However in Mathematica and other languages
that support Functional Programming, the Map function can do all of this for you
at once.

You may have the occasional programming task that involves transforming a
list from one form to another. For example, suppose you have a list of complex
numbers that you’d like to plot in the plane:

(* Cell 1.2 *)

(* You can type i as: ‘‘Esc’’+ii+‘‘Esc’’ *)

SomeComplexNumbers = {1 + 2i, 2 + 3i, 4 + 5i, 6 + 7i};
The first thing we need to do is figure out how to transform each number into a

point in the plane. The rule we will use for this is z 7→ (Re[z], Im[z]), which means
that the x value of the point will be the Real part of the complex number, and the
y value of the point will be the Imaginary part of the number. Let’s express this
in Mathematica as follows:

(* Cell 1.3 *)

ComplexToCartesian[z ]:={Re[z],Im[z]};
You can try that on a few numbers to get a feel for how it works. Now that

we know how to transform an individual number, how can we easily apply it to a
whole list of numbers? That’s right, we use Map.

2This is a much different model than languages like Perl or Ruby that automatically grow

an array when you make an “out of bounds” assignment. This strategy, while handy, can slow
down your program because memory will be allocated frequently in small chunks rather than

infrequently in large chunks.
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(* Cell 1.4 *)

Map[ComplexToCartesian, SomeComplexNumbers]

↪→ {{1,2},{2,3},{4,5},{6,7}}

So we see that we have successfully transformed a list of complex numbers into
a list of ordered pairs. If we check the documentation for ListPlot3, we see that
it will accept a list of ordered pairs and plot them. As such:

(* Cell 1.5 *)

OrderedPairs = Map[ComplexToCartesian, SomeComplexNumbers];

ListPlot[OrderedPairs]

2. The Table Function

Table is a very handy function that will generate Lists, Matrices4, 3D Arrays5,
etc based on an expression. For Example,

(* Cell 2.1 *)

Table[ai,j, {i,1,2},{j,1,3}]

↪→
(

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

)
You can see in Cell 1 that Table takes an expression as its first argument. That

expression should contain some symbols, or “Dummy Variables” that will be used
for iteration. The other arguments given to Table are lists that describe how the
“Dummy Variables” should iterate. In this particular example, we build a matrix
with two rows and three columns.

If we wanted to build a function to transpose a square matrix, we could do so
as follows using the Table function:

(* Cell 2.2 *)

SimpleTranspose[matrix ]:= Block[{n},
n = Length[matrix];

Table[matrix[[j,i]],{i,1,n},{j,1,n}]
];

This function simply measures the length of the given matrix, and then creates
a table whose i, j-entry is the j, i-entry of the original matrix, resulting in the
transpose6.

3Hint: check the documentation. Relying on the documentation is a great way to become
more fluent in Mathematica

4Matrices are just lists of lists
53D Arrays are lists of lists of lists
6SimpleTranspose only works for square matrices. Mathematica’s built-in Transpose function

works for rectangular matrices as well



APPENDIX A

Finding Help in Mathematica

1. Documentation Center

You can accessMathematica’s built-in documentation center by pressing “Shift”
+ “F1” from anywhere in the application. The Help Center provides the official
documentation for all fo the built-in functions you will use, and for many additional
packages that are included in Mathematica but not enabled by default.

Each function has its own page in the Help Center. Try searching for Plot.
You will see several things:

(1) A summaray of usage detailing all the ways that Plot can be invoked,
and what the differences are.

(2) A section showing further examples and more sophisticated tricks.
(3) A list of related functions, such as Plot3D and Manipulate.

One of the difficulties in reading the documentation given in the Help Center is that
it references other documentation in the Help Center, and you may get the feeling
that you are going in circles. This is quite normal, and no cause for worry. Every
programmer encounters this difficulty when learning a new language, though they
may not admit it. The trick really is to keep following the trail until you build up
enough context that what you are reading starts to make sense.

It is important, in situations like these, to put aside (momentarily) the problem
for which you are searching and focus on what is presented in the documentation.
Play with the examples that are given. Try changing parts of them, rearranging
the arguments, throwing in different numbers or values. If you mess it up, you can
always just close the Help Center and come back to it later. Above all, it is vital
to be patient.

The single most frustrating experience you can have while programming is to
spend ages hunting through the documentation for The Wrong Way to Do It. The
docs, you see, are designed to show The Right Way to Do It, and it may sometimes
take a while to recognize that for what it is.

You may trust that the authors have spent many long sessions dumbfounded in
front of the Mathematica Help Center only to realize in a great flurry of excitement
that the answer is completely different than we initially expected. One cannot rush
that sort of thing; this stuff just takes time.

2. Stack Overflow

One of the greatest resources forMathematica help on the internet is StackOver-
flow/Mathematica. Also becoming very popular is mathematica.stackexchange.com,
which is a separate site dedicated enitrely to Mathematica issues. Both of these
should serve you well in your quest to find answers to your problems.

17

http://stackoverflow.com/questions/tagged/mathematica
http://stackoverflow.com/questions/tagged/mathematica
http://mathematica.stackexchange.com/
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StackOverflow is a forum in which users are encouraged to give insightful an-
swers in order to receive points, which amount to social capital. Thus, the answers
you will find on StackOverflow are consistently of a higher quality than those you
will find on other programming-related websites.

On StackOverflow, all questions are tagged according to which programming
language or platform they pertain to. The link above will take you directly to the
Mathematica questions, and from there you can search for more specific information
about your question.

Generally, the probability that the issue you have run into when programming
in Mathematica (or any language) is unique is very low, so the odds are in your
favor that someone has encountered a very similar problem before you. Thus, the
challenge is to alter your search terms judiciously until you stumble on a problem
that seems to fit the issue you are dealing with.

One way to help with this process is to speculate a few guess about what the
problem might be. For example, are you using some functions whose behavior you
don’t quite understand? Maybe you getting a weird output that doesn’t look like
what you think it should? Searching on StackOverflow for things like “ListPlot no
graph” is more likely to get you useful results than “no graph”.

2.1. Asking Questions on Stack Overflow. Accounts on StackOverflow
are free, and joining this community will help you learn a great deal about both
Mathematica and programming in general. Searching through other people’s ques-
tions and the suggested answers can be very informative, and it is a good intellectual
exercise to try to solve some on your own (and you may even be rewarded with
profile points!).

Of course, membership on StackOverflow also allows you to post questions.
Understand though that the community expects you to have done some work before
you post a question. Generally, before posting new questions, it is advisable to:

(1) Try your query on a major search engine like Google or Bing. At least try
all the links on the first page to see if they have anything helpful to offer.

(2) Try searching WolframAlhpa. While this is not exactly a search engine
in the usual sense, its results usually contain Mathematica code which is
occasionally helpful.

(3) Try the Mathematica documentation. You can access this by pressing
Shift+F1 while running Mathematica. Specifically, you will want to look
at the examples that are available on the documentation page for each
function that you might have questions about. Frequently functions can
take different arguments, or give different output depending on parameters
or options, so it may be that you need to invoke your function in a slightly
different way.

If you have done these things and still not found the answer to your question,
then it will be cool to post your question on Stack Overflow. One thing to note
is that while people on Stack Overflow are usually very eager to help, they need
enough information about what you are trying to do to be able to understand where
you might be running into trouble. Generally, posting a single line of code may not
be enough. Also, keep in mind that folks on the internet are very unlikely to be
familiar with your research, so it is important to track down the issue as specifically
as possible.


	Preface
	If you have never used Mathematica …
	1. Notebooks and Cells
	2. Fancy Typing and the Palette
	3. Functions
	4. Variables

	Chapter 1. A Review of Some Stuff You've Probably Seen Before
	1. Variable Assignment
	2. Invoking Functions

	Chapter 2. The Kernel, Variable State, and Scope
	1. What is the Kernel?
	2. Scoping Variables with Block

	Chapter 3. Defining Your Own Functions
	1. Using Block for Scope
	2. Accepting Functions as Arguments
	3. Recursive Functions

	Chapter 4. Lists, Map, and Table
	1. The Map Function
	2. The Table Function

	Appendix A. Finding Help in Mathematica 
	1. Documentation Center
	2. Stack Overflow


